ریاضی خونه

ریاضی علم شیرین

با سلام ... ورود شمارا به وبلاگ ریاضی خونه خوش آمد میگویم ... برای مشاهده کامل مطالب از آرشیو مطالب وبلاگ استفاده کنید.

عدد صحیح

عدد صحیح











img/daneshnameh_up/e/ef/integer.jpg

به مجموعه‌ی اعداد زیر ،‌ اعداد صحیح یا اعداد درست گویند و آن را با Z نمایش می‌دهند:
::{ ... , 3 , 2 , 1 , 0 , 1- , 2- , 3- , ...} = Z
درواقع اعداد صحیح شامل اعداد طبیعی مثبت و اعداد طبیعی منفی و عدد صفر است.
این اعداد همانند اعداد طبیعی جزء مجموعه های شمارش پذیر نامتناهی است.
شاخه ای از ریاضیات که به مطالعه در مورد ویژگی‌های اعداد صحیح می پردازدنظریه اعداد نام دارد.

ویژگی‌های جبری

اعداد صحیح همانند اعداد طبیعی نسبت به اعمال جمع و ضرب بسته است،یعنی جمع و ضرب هر دو عدد صحیح، یک عدد صحیح است.
و چون اعداد صحیح شامل اعداد منفی و صفر می باشند بنابراین بر خلاف اعداد طبیعی نسبت به عمل تفریق نیز بسته اند.ولی چون حاصل تقسیم دو عدد صحیح بر هم ممکن است عددی صحیح نباشد،پس نمی‌تواند نسبت به عمل تقسیم بسته باشد.


جمع ضرب
بسته بودنa × b یک عدد صحیح است a+b یک عدد صحیح است
شرکت پذیری a + (b + c) =(a + b) + c a × (b × c)=(a × b) × c
جابجایی
a+b = b+a
a×b = b×a
عضو همانی
a+0 = a
a×1 = a
وارون
a+ (−a) = 0
ندارد
توزیع پذیری
(a×(b + c) = (a × b)+(a × c

با توجه به خواص ذکر شده در جدول فوق مجموعه Z با عمل جمع تشکیل یک گروه آبلی را میدهد.ولی مجموعه Z با عمل ضرب تشکیل گروه نمیدهد،چون تمام اعداد صحیح دارای عضو معکوس در Z نیستند.

اگر چه عمل تقسیم روی مجموعه Z تعریف نشده است .ولی یکی از مهمترین خواص تقسیم به نام الگوریتم تقسیم در این مجموعه تعریف شده است.این الگوریتم به ما میگوید : دو عدد صحیح مانند a وb که b ≠ 0 در نظر میگیریم.در این صورت اعداد صحیح یکتا مانند q وr وجود دارند به طوریکه:
عدد صحیح q راخارج قسمت وr را باقی‌مانده مینامند. این روش ،اساس محاسبه بزرگترین مقسوم علیه مشترک میباشد.

تعریف اعداد صحیح از روی اعداد طبیعی

img/daneshnameh_up/2/23/Integers.JPG

می‌خواهیم از روی اعداد طبیعی مجموعه‌ی اعداد صحیح را به کمک منطق کلاسیک و اصول ZF تولید کنیم.
رابطه‌ی ~ را روی __Nتعریف می‌کنیم:
('a , b) ~ (a' , b) اگر و تنها اگر a+b' = a'+b
رابطه‌ی فوق یک رابطه‌ی هم‌ارزی است.
به مجموعه‌ی کلاس های هم ارزی رابطه‌ی هم‌ارزی ~ ، اعداد صحیح می‌گویند.

در واقع هر عدد صحیح عبارت است از b-a برای یک عضو از یک کلاس هم‌ارزی.
مثلا 3=کلاس هم‌ارزیِ {(4 , 1) , (5 , 2) , ... } , 7- = کلاس هم‌ارزیِ {(1, 8) , (2 , 9) , ... }.
شکل روبرو تعریف را ساده‌تر نمایش می‌دهد . هر عدد صحیح معادل یک کلاس هم‌ارزی است که اعضای هر کلاس هم‌ارزی با یک رنگ نشان داده شده‌اند.

همچنین ببینید:


پیوندهای خارجی

http://web01.shu.edu/projects/reals/logic/numbers.html


منبع:رشد





[ بازدید : 256 ] [ امتیاز : 3 ] [ نظر شما :
]

[ پنجشنبه 6 فروردين 1394 ] 23:55 ] [ امیرحسین جعفری ]

[ ]

اعداد اول

اعداد اول:
تعریف:
عدد طبیعی P>1 را عدد اول می گویند هرگاه تنها مقسوم علیه های مثبت آن 1 و P باشند. به عبارت دیگر یک عدد طبیعی اول است هرگاه جز یک و خودش بر هیچ عدد دیگری بخش پذیر نباشد.
هر عدد طبیعی مخالف یک که اول نباشد مرکب یا تجزیه پذیر می گوییم.

به عنوان مثال اعداد 2و3و5و7 اول و اعداد 12و18و325 مرکب می باشند.
  • لازم به ذکر است که عدد یک نه اول و نه مرکب است و تنها عدد اول زوج عدد 2 است.

اگر n عددی مرکب باشد می توان گفت:
  • نتیجه: اگر P عددی اول . a و b اعدادی طبیعی باشند، در این صورت:

برهان:
چون P عددی اول است بنابراین تنها دو مقسوم علیه متمایز دارد. از اینکه P=ab و aنتیجه می شود a , b دو مقسوم علیه متمایز P می باشند چون: a|P ,b|P و بنابر تعریف a=1 , b=P خواهد بود.


  • حال به بیان چند قضیه مهم در باره اعداد اول می پردازیم:
  • قضیه 1) هر عدد صحیح بجز یک و منفی یک دارای حداقل یک مقسوم علیه اول است.
برهان:
فرض می کنیم a عددی صحیح باشد که مخالف یک و منفی یک است. اگر a=0 باشد در این صورت تمامی اعداد صحیح از جمله اعداد اول a را می شمارند و حکم برقرار است. حال فرض می کنیم a مخالف صفر باشد و نشان می دهیم a دارای حداقل یک مقسوم علیه اول است. برای این منظور مجموعه مقسوم علیه های مثبت و بزرگتر از یک a را به این صورت تعریف میکنیم:
مجموعه S ناتهی است چرا که:
پس:. از طرفی دیگر مجموعه S زیرمجموعه اعداد طبیعی است پس بنابر اصل خوشترتیبی S دارای عضو ابتدا(مینیمم) چون P است.
نشان می دهیم که P عددی اول است. برای اثبات ادعا از برهان خلف استفاده می کنیم:
به برهان خلف فرض می کنیم P عددی اول نباشد، پس P عددی مرکب است لذا:
,این نتیجه می دهد:
از طرفی دیگر: که این نتیجه می دهد:.
و این با مینیمم بودن P در تناقض است چون: و لذا فرض خلف باطل و چنین نیست که P اول نباشد پس P اول است. به این ترتیب نشان داده شد عدد a حد اقل یک مقسوم علیه اول دارد.

  • قضیه 2) بی نهایت عدد اول وجود دارد.
برهان:
برای اثبات این قضیه از برهان خلف استفاده می کنیم. به برهان خلف فرض می کنیم تعداد اعداد اول متناهی باشد و به فرض تنها اعدد اول موجود باشند. قرار می دهیم:

بوضوح M بزرگتر از یک و طبیعی است پس بر طبق قضیه قبل می توان گفت M دارای حداقل یک مقسوم علیه اول است و چون تعداد اعداد اول موجود محدود است آن مقسوم علیه اول یکی از اعداد است به فرض عضوی چون: داریم:

که این با اول بودن در تناقض است چون نه اول و نه مرکب است . و لذل فرض خلف باطل و حکم برقرار است و تعداد اعداد اول بی شمار است.

  • لازم به توضیح است که این قضیه نخستین بار توسط اقلیدس در حدود سال 300 قیل از میلاد اثبات گردیده است.
  • قضیه 3) هر عدد مرکب n دارای حداقل یک مقسوم علیه اول کوچکتر یا مساوی است.
برهان
چون n مرکب است پس:
حال نشان می دهیم که:
به برهان خلف اگر: آنگاه و در نتیجه: که این تناقض است و لذا فرض خلف باطل و حکم برقرار است یعنی: حال چون a بزرگتر از یک است پس a دارای حداقل یک مقسوم علیه اول مانند p است. داریم:

و از سوی دیگر:
پس p عددی اول است که در شرایط قضیه صدق می کند و لذا حکم برقرار است.

  • لازم به توضیح است که قضیه فوق اساس روش غربال اراتستن است.

  • قضیه4) اگر n عددی طبیعی و بزرگتر از 2 باشد, حتما" بین n و 2n عدد اولی وجود دارد. (قضیه چپیشف)

  • قضیه بنیادی حساب:
هر عدد طبیعی بزرگتر از یک را می توان به صورت یکتایی به صورت حاصل ضرب عوامل اول نوشت.
به عبارت دیگر اگر n عددی طبیعی و بزرگتر از 1 باشد:
که در آن ها اعداد اول متمایر می باشند.
این نمایش را تجزیه عدد n به عوامل اول می گوییم.


همچنین اگر n<-1 باشد باز هم می توان n را به صورت یکتایی به صورت حاصل ضرب عوامل اول نوشت:


که در آن ها اعداد اول متمایز می باشند.
  • توجه: اگر n=1 باشد آنگاه که در ان P هر عدد اولی است.
  • لازم به توضیح است که ممکن است در تجزیه یک عدد طبیعی به عوامل اول، تعدادی از عوامل یکسان باشند. به عنوان مثال:12=2×2×3
تجزیه استاندارد یک عدد:
اگر n>1 عددی طبیعی باشد آنگاه عدد n را می توان به شکل یکتایی به صورت:

که در آن ها اعداد اول متمایز و اعداد طبیعی اند.
این روش نمایش و تجزیه عدد را تجزیه متعارف، استاندارد، یا کانونیک عدد n می گویند.

  • توجه: بزرگترین توان که: را به صورت می دهند.

به عنوان مثال تجزیه استاندارد 12 به عوامل اول به صورت مقابل است:

منبع:رشد

[ بازدید : 207 ] [ امتیاز : 3 ] [ نظر شما :
]

[ پنجشنبه 6 فروردين 1394 ] 23:50 ] [ امیرحسین جعفری ]

[ ]

آمار

آمار علم و عمل توسعه دانش انسانی از طریق استفاده از داده‌های تجربی است. آمار بر نظریه‌ی آمار مبتنی است که شاخه‌ای از ریاضیات کاربردی است. در نظریه‌ی آمار، اتفاقات تصادفی و عدم قطعیت توسط نظریه احتمال مدل می‌شوند. عمل آماری، شامل برنامه‌ریزی، جمع‌بندی، و تفسیر مشاهدات غیر قطعی است. از آنجا که هدف آمار این است که از داده‌های موجود «بهترین» اطلاعات را تولید کند، بعضی مؤلفین آمار را شاخه‌ای از نظریه‌ی تصمیم‌گیری به شمار می‌آورند.

تاریخچه

سرآغاز اولیه آمار را باید در شمارش های آماری حوالی آغاز قرن اول میلادی یافت. اما ،تنها در قرن هجدهم بود که این علم ، با به کار رفتن در توصیف جنبه هایی که شرایط یک وضعیت را مشخص میکردند ، به عنوان رشته ای علمی و مستقل شروع به مطرح شدن کرد.
مفهوم از کلمه لاتینی ،به معنی شرط ، استخراج شده است. مدت های مدید ، این علم ، محدود به کار در این حوزه بود ، و تنها در دهه های اخیر از این انحصاری جدا شدو ، و به کمک نظریه احتمال ،شروع به بررسی روش های تحلیل داده های آماری و اثبات فرض های آماری کرد.
روش های این آمار ریاضی با آشکار کردن قوانین جدید ، به ابزاری موثر در علوم طبیعی و تکنولوژی تبدیل شد.

جامعه و نمونه

جامعه یک بررسی آماری دارای مشاهده ها یا آزمایش هایی تحت شرایطی یکسان ، به عنوان عنصرهای خود است. هر یک از این عنصرها را میتوان نسبت به مشخصه های متفاوتی بررسی کرد ، که می توانند به عنوان متغیرهای تصادفی XوY .... در نظر گرفته شوند.
اگر مشخصه تحت بررسی X ، دارای تابع توزیع F در جامعه مربوط باشد ، آنگاه گفته می شود که جامعه مورد بحث دارای توزیع F نسبت به مشخصه X است. در بررسی های آماری همواره زیر مجموعه ای متناهی از عناصر جامعه مورد تحقیق قرار می گیرد.این زیر مجموعه به نمونه موسوم است ، و n، تعداد عناصر موجود در آن ، اندازه نمونه نامیده می شود.

مثال

اگر وزن پسر بچه های ده ساله متغیر تصادفی x باشد ، در این صورت تمام پسر بچه های به این سن یک جامعه تشکیل می دهند . اندازه های وزن پسربچه های در شماری از مکان ها یک نمونه می سازند ، و هر پسر بچه عنصری از جامعه مزبور است . وزن مورد بحث مشخصه ای از عنصر های مزبور به شمار می رود ، و سایر مشخصه ها ، به عنوان مثال ، بلندی قد و اندازه سینه اند.

طرح آزمایش

در بررسی یک مسئله با روش های آماری ، باید نقشه آزمایش کشیده شود که شامل روش جمع آوری داده ها،اندازه نمونه مورد نظر و روش حل آن مسئله است. در این مورد هر چه نقشه آزمایش دقیق تر باشد ، نتایج به دست آمده از روش های آماری بهتر خواهند بود . بخصوص ، باید اطمینان حاصل شود که هیچ یک از اندازه گیری هایی که برای نتایج مورد نظر دارای اهمیت اند از قلم نیفتند یا ناقص نباشند . اما در این مورد همچنین می توان ، تنها به همان اندازه که می شود با بخش ناچیزی از هزینه ها به دست آورد قناعت و از دستاوردی با یک رشته آزمون بسیار پرخرج اجتناب کرد.
در این رابطه ، نکات زیر از اهمیت برخوردارند:
  • مواد یا اطلاعات بررسی شده باید همگن باشند ؛ یعنی ،روش آزمون ،در دوره بررسی ، باید یکسان باقی بماند. در وسایل یا شرایط تولید نباید تغییری داده شود ، و ابزارهای اندازه گیری با دقت های متفاوت نباید به کار روند.

  • بایدتا آنجا که امکان دارد خطاهای منظم یا عوامل موثر کنار گذاشته شوند . به عنوان مثال ، اگر مایل باشیم دو ماده را با هم مقایسه کنیم ، باید هر دو را در یک دستگاه تهیه کرده باشیم ، چه در غیر این صورت تفاوت دستگاه ها در نتایج بررسی وارد می شود ، و در کشاورزی ، در آزمون کودهای متفاوت ، باید زمین را ،به خاطر یکسان کردن تاثیر نوع خاک و موقعیت آن ، به باریکه های موازی تقسیم کرد.

باید نظارتی در نظر گرفته شود. در این مورد، یا برای مشخصه تحت بررسی مقادیر استانداردی موجودند ،که می توانند با نتایج آزمون مقایسه شوند ، یا آزمونهای نظارتی باید انجام گیرند . به عنوان مثال ، در آزمایش مربوط به کودها ، باید تاثیر یک کود از تفاوت بین گیاهانی که که با آن یا بدون آن ،تحت شرایط محیطی یکسان ،رشد کرده اند ، ارزیابی شود.

انتخاب نمونه باید تصادفی یا نماینده ای باشد . انتخاب تصادفی انتخابی است که در آن هر عنصر برای اینکه عضو آن نمونه باشد یا نباشد ، از احتمال یکسان برخوردار است. به عنوان مثال ، در یک محموله پیچ ، نمونه مورد آزمون نباید تماماَ از یک مکان انتخاب شود ،بلکه باید روی کل محموله توزیع شده باشد ، و در اندازه گیری ضخامت سیم ها نقاط اندازه گیری شده باید به طور تصادفی روی تمام طول سیم توزیع شده باشد.

انتخاب تصادفی عناصر را می توان به کمک جداول اعداد تصادفی انجام داد ، و انتخاب نماینده ای نمونه را می توان زمانی انجام داد که ماده تحت بررسی را بتوان به گونه ای یکتا به اجزایی تقسیم کرد . به عنوان مثال ، امکان پذیر است که یک محموله پیچ را به چنان طریقی تقسیم کنیم که هر جزء مزبور ، به تصادف انتخاب کرد ، ودر این صورت کل آنها نمونه مورد نظر را تشکیل می دهند. به این طریق تصویری از محموله ، بر مبنای مقیاسی کاهش یافته به دست می آید.
با توجه به اندازه نمونه مورد آزمون ، البته باید به بررسی مورد بزرگ تر و استنتاج بهتر ، درباره جامعه ای که از آن می توان ساخت ، پرداخت ،اما از طرف دیگر ، اندازه مزبور ، به دلایل زمانی و تلاش به کار رفته ، معمولاَ کوچک در نظر گرفته می شود، بنابر این باید انحرافی تصادفی از نتایج را نیز به حساب بیاوریم. هنگامی که ، با روش های آماری ، استنتاجاتی درباره جامعه ای به دست می آوریم باید اندازه نمونه مورد آزمون را نیز در نظر بگیریم.

از این گفته ها میتوان به اهمیت تحصیل در رشته آمار و نیاز جامعه به فارغ التحصیلان این رشته پی برد.

منبع:رشد


[ بازدید : 185 ] [ امتیاز : 3 ] [ نظر شما :
]

[ پنجشنبه 6 فروردين 1394 ] 23:49 ] [ امیرحسین جعفری ]

[ ]

اصل لانه کبوتر

اصل لانه کبوتر




اصل لانه کبوتر که به نام های «اصل جعبه کفش» یا «اصل کشویی دیر کله» مشهور است، اغلب برای پاسخ دادن به سوالات زیر مفید است:
«آیا اشیایی وجود دارند که درخاصیت مشخصی صدق کنند؟»
اگر اصل لانه کبوتر به طور موفقیت آمیزی به کار رود، تنها وجود چنین اشیایی را ثابت می کند و چیزی درباره روش یافتن اشیا و یا مشخص کردن تعداد آنها بیان نمی کند.

شکل ساده اصل لانه کبوتری

n کبوتر در k لانه قرار می گیرند. اگر n>k ،آنگاه تعدادی از لانه ها بیش از یک کبوتر خواهند داشت.

برهان

دلیل درستی این اصل، اغلب به برهان خلف ثابت می شود. زیرا، اگر اصل برقرار نباشد، آنگاه، هر لانه حداکثر یک کبوتر دارد و در این حالت، حداکثر کبوتر وجود خواهد داشت که با فرض و وجود کبوتر متناقص است. به دلیل بدیهی بودن استدلال به عنوان اصل پذیرفته می شود. دقت کنید که این اصل، اطلاعاتی درباره آن لانه هایی که حداقل دو کبوتر دارند ارائه نمی کند و تنها وجود چنین لانه هایی را تایید می کند.
در استفاده از این اصل در حل مسایل، باید تصمیم گرفت که نقش کبوتر ها و لانه ها چگونه تعبیر شوند.


img/daneshnameh_up/2/29/kab.gif


مثال

ده نفر به اتاقی وارد شده اند که نام کوچک آنها احمد، رضا و مهدی است و نام خانوادگی آنها محمدیان، رسولی و رضایی است. نشان دهید حداقل دو نفر از این ده نفر، نام و نام خانوادگی یکسانی دارند.
حل: تنها 9 امکان برای تولید اسامی متمایز وجود دارد. اگر افراد را به عنوان کبوتر اسامی را به منزله لانه کبوتر فرض کنیم، آنگاه بنا بر اصل لانه کبوتر، بعضی از اسامی (لانه ها) به حداقل دو نقر (کبوتر ها) نسبت داده می شوند.
حال مثال دیگری ذکر میکنیم:

15 نفر دریک میهمانی شرکت کرده اند. طبق این اصل حداقل دو نفر پیدا می شوند که در یک ماه به دنیا آمده اند.

منبع: رشد




[ بازدید : 278 ] [ امتیاز : 3 ] [ نظر شما :
]

[ پنجشنبه 6 فروردين 1394 ] 23:46 ] [ امیرحسین جعفری ]

[ ]

هندسه تحلیلی

هندسه تحلیلی




مقدمه

هندسه تحلیلی شامل مباحثی چون بردارها ، معادلات حرکت پرتابه ، معادلات خط ، ضرب عددی و برداری، بردارها. مقاطع مخروطی که در هندسه یونان پا گرفت و امروزه با معادلات درجه دو بعنوان منحنی‌هایی در صفحه مختصات توصیف می‌شوند یونانیان زمان افلاطون این منحنی‌ها را فصل مشترک یک صفحه با یک مخروط می‌گرفتند که نام مقطع مخروطی از آن ناشی شده است. نکته‌ای که حائز اهمیت اشاره به این مسئله است که در مطالعات هندسه تحلیلی مختصات دکارتی از اهمیت فوق‌العاده‌ای دارد زیرا توسط این مختصات ما می‌توانیم طول و عرض و ارتفاع اجسامی را که می‌بینیم به صفحه منتقل کرده و درباره آنها براحتی به مطالعه پردازیم.

بردارها

برخی از کمیات که اندازه می‌گیریم با اندازه‌شان کاملا مشخص می‌شوند مانند جرم ، طول ، زمان. اما همانطور که می‌دانیم توصیف یک نیرو ، تغییر مکان و سرعت تنها با اندازه مشخص نمی‌شوند بلکه برای درک صحیحی از آنها باید جهت آنها نیز برای ما مشخص باشند کمیاتی که علاوه بر اندازه دارای جهت نیز می‌باشند معمولا با پیکانهایی به نمایش درمی‌آیند که به جهت اثر کمیت اشاره می‌کنند و طول‌هایشان به اندازه اثر آنها برحسب واحد مشخص اشاره می‌کنند. به این کمیات بردار می‌گوییم.

یک بردار واقع در صفحه عبارت است از پاره‌خطی جهتدار از آنجا که بردار اساسا از طول و جهت تشکیل می‌شود و بردار را همسنگ و یا حتی یکی می‌نامیم هرگاه طول و جهتشان یکی باشد.

بردارهای نوین امروزی ریشه در کواترنیونها دارند. کواترنیونها تعمیمی هستند از جفت به چهارتایی مرتب . جبر کواترنیونها را ویلیام همیلتن ریاضیدان ایرلندی (1805-1865) ابداع کرد. اما مهندسان علی‌الخصوص اولیور هویساید آنالیز برداری را رواج دادند. برخی از فیزیکدانان از جمله شاخص‌ترین آنها جیمز کلارک ماکسول ، از هر دو مضمون کواترنیونها و بردارها بهره بردند. سرانجام مقارن با تحویل قرن ، آنالیز برداری گیبس و هوسیاید غلبه کرد. مهندسان از جمله نخستین معتقدان، فیزیکدانان از نخستین گروندگان و ریاضیدانان آخرین پذیرندگان این باب از ریاضیات بودند.

بردارها درفضا

مهمترین ویژگی بردارها در فضا مانند حالتی که در صفحه داشتند طول و جهت آنهاست. طول برداری مانند با دوبار استفاده از قضیه فیثاغورث بدست می‌آید. و جهت آنها از تقسیم مولفه‌های برداری چون A بر اندازه‌اش بدست می‌آید.

معادلات پارامتری حرکت ایده‌آل پرتابه

برای بدست آوردن معادلات حرکت پرتابه فرض می‌کنیم پرتابه مانند ذره‌ای رفتار می‌کند که در صفحه مختصات قائم حرکت می‌کند و تنها نیروی موثر بر آن در ضمن حرکتش ، نیروی ثابت گرانش است که همواره روبه پایین است. در عمل هیچ یک از این فرضیات برقرار نیست زمین در زیر پرتابه می‌چرخد هوا نیروی اصطکاکی ایجاد می‌کند که به سرعت و ارتفاع پرتابه بستگی دارد. برای توصیف حرکت در یک دستگاه مختصات مشخص فرض می‌کنیم پرتابه در لحظه از مبدا صفحه xy پرتاب می‌شود. همچنین فرض می‌کنیم پرتابه در ربع اول حرکت می‌کند و مقدار سرعت اولیه است و بردار سرعت با محور xهای مثبت زاویه می‌سازد. در هر لحظه t ‌، ، مکان پرتابه با جفت مختصات . مشخص می‌شود. بنابراین پس از ساده‌ کردن یک سری از معادلات به روابط زیر دست می‌یابیم که مکان ذره t ثانیه پس از پرتاب برای ما مشخص می‌سازد:


مسیر ایده‌آل یک سهمی است.

اغلب ادعا می‌شود که مسیر حرکت آبی که از یک لوله بیرون می‌جهد یک سهمی است اما اگر به دقت این مسیر بنگریم می‌بینیم که هوا سقوط آب را کند می‌کند و حرکت آن رو به جلو آنقدر کند است که از انتهای سقوطش از شکل سهموی خارج می‌شود. ادعایی که در مورد سهموی بودن حرکت می‌شود فقط در مورد پرتابه‌های ایده‌آل واقعا درست است. این مطلب را می‌توان از روابط که در بالا برای y ,x ذکر شد بدست آورد. بدین ترتنیب که هرگاه مقدار t را از معادله x بدست آوردیم و آن را در معادله y جاگذاری کنیم معادله دکارتی بدست آمده نسبت به x از درجه دوم و نسبت به y از درجه اول است پس نمودارش یک سهمی است.

خط در فضا

فاصله در فضا

گاهی لازم است که فاصله بین دو نقطه مثل در فضا مشخص باشد برای این کار طول را می‌یابیم که در اینصورت داریم:



وسط پاره خط

مختصات نقطه وسط M پاره‌خطی که دو نقطه را بهم وصل می‌کند متوسط مختصات هستند. برای پی‌بردن به دلیل این مطلب کافی است توجه کنیم که این نقطه مختصات مولفه عددی برداری است که مبدا را به M وصل می‌کند که به این ترتیب تمام مولفه‌های M از نصف مجموع مولفه‌های نظیر به نظیر بدست می‌آید.

زوایای بین خم‌ها

زوایای بین دو خم مشتق‌پذیر در یک نقطه تقاطع آنها عبارت‌اند از زوایای بین خط‌های راس بر آنها در آن نقطه.

معادله‌های خط و پاره‌خط

فرض می‌کنیم L خطی باشد در فضا که از نقطه بگذرد و موازی با بردار باشد. پس L مجموعه نقاطی است مانند به قسمی که بردار با V موازی است یعنی P بر L واقع است اگر و تنها اگر به ازای عددی مانند t داشته باشیم: این معادلات را پس از ساده ‌کردن بصورت معادلات پارامتری متعارف خط L درست می‌یابیم که عبارت‌اند از:


وقتی پارامتر t از تا افزایش می‌یابد نقطه دقیقا یکبار خط را می‌پیماید. وقتی t بازه بسته را می‌پیماید، P از نقطه‌ای که در آن t=a تا نقطه‌ای که در آن t=b بر روی یک پاره‌خط جابجا می‌شود.

فاصله یک نقطه از یک خط

برای یافتن نقطه‌ای چون P از خطی مانند L کافی است برای اولین قدم نقطه‌ای مانند Q را روی L در نظر بگیریم که نزدیکترین فاصله را تا P داشته باشد سپس برای قدم دوم لازم است فاصله P تا Q را محاسبه کنیم بدین ترتیب فاصله یک نقطه از خط دیگری را بدست آورده‌ایم.

معادله صفحه

فرض می‌کنیم M معرف صفحه‌ای از فضاست که از نقطه می‌گذردو بر بردار ناصفر عمود است. پس M از مجموعه نقاطی مانند تشکیل می‌شود که به ازای آنها بردار بر N عمود است. یعنی P روی M است اگر و تنها اگر:
با جاگذاری عبارت معادل در تساوی فوق معادله صفحه حاصل می‌شود.

زاویه بین دو صفحه ، فصل مشترک دو صفحه

بنابه تعریف زاویه بین دو صفحه متقاطع ، زاویه حاده‌ای است که دو بردار قائم بر آنها با هم می‌سازند. بنابراین زاویه بین دو صفحه که بردارهای قائم بر دو صفحه‌اند توسط رابطه زیر حاصل می‌شود:


(منظور از | | ، اندازه بردارها می‌باشد.)
برای یافتن معادلات پارامتری فصل مشترک دو صفحه ابتدا برداری موازی با فصل مشترک و سپس نقطه‌ای واقع بر فصل مشترک می‌یابیم. همانطور که می‌دانیم هر بردار که موازی با فصل مشترک دو صفحه باشد با هر دو صفحه مفروض موازی است لذا بر بردارهای قائم بر آن دو صفحه عمود است. بنابراین با یافتن بردار حاصل ضرب خارجی بردارهای عمود بر صفحات می‌توان بردار موازی فصل مشترک را بیابیم. برای یافتن نقطه‌ای روی فصل مشترک باید نقطه‌ای بیابیم که در هر دو صفحه باشد بدین منظور z=0 را در معادلات صفحه قرار می‌دهیم و دستگاه حاصل را نسبت به x , y حل می‌کنیم نقطه حاصل در هر دو صفحه خواهد کرد.

کاربردها

هندسه تحلیلی همانطور که از نامش پیداست به تحلیل و کنجکاوی هندسه و روابط هندسی می‌پردازد و کاربردهای آن در مسیر علوم از جمله فیزیکی - اخترشناسی- هوافضا- حتی شیمی غیرقابل انکار است. همه مطالب ذکر شده فوق مقدمه‌ای است برای بررسی مفصل‌تر حرکت. مبحث بردارها پایه خوبی برای بسط و گسترش حساب دیفرانسیل و انتگرال

منبع: رشد


[ بازدید : 186 ] [ امتیاز : 3 ] [ نظر شما :
]

[ پنجشنبه 6 فروردين 1394 ] 23:44 ] [ امیرحسین جعفری ]

[ ]

اتحاد

اتحاد

مقدمه و معرفی


در ریاضیات اتحادها تساوی هایی هستند که به ازای هر مقدار عددی از دامنه خود که بجای متغییرهایشان قرار دهیم همواره برقرار باشند. به عنوان مثال تساوی برای هر x عضو دامنه برقرار است. لذا این عبارت جبری یک اتحاد است، اما تساوی فقط برای x=1 برقرار است. پس این عبارت یک اتحاد نمی باشد. در واقع در مورد یک اتحاد در اصل به یک تساوی بدیهی چون 0=0 می رسیم.
به عنوان مثال در اتحاد مثال زده شده دو طرف ساده شده و تساوی 0=0 حاصل می شود.
به این ترتیب تفاوت میان یک اتحاد جبری و یک معادله جبری در این است که اتحاد جبری به ازای همه مقادیر دامنه برقرار است در صورتی که یک معادله جبری به ازای تعداد محدودی از اعضای دامنه(مجموعه جواب معادله) برقرار است.
عبارات زیر نمونه ای از اتحاد است:

اتحادهای مهم جبری


در میان اتحادهای جبری، برخی از اتحادها بسیار مهم و کاربردی می باشند و در حل معادلات، محاسبات جبری، تجزیه عبارت جبری و... بسیار کاربرد دارند. از این رو دانستن و به کاربردن آنها از اهمیت خاصی برخوردار است. در این قسمت به بررسی این اتحادهای مهم می پردازیم.

اتحاد مربع مجموع دو جمله



مثال:

اتحاد مربع تفاضل دو جمله



مثال:

اتحاد مکعب مجموع دو جمله



مثال:

اتحاد بسط دو جمله ای نیوتن

در دو اتحاد قبل مشاهدی کردید که عبارت مجموع با تفاضل دو جمله چون (a+b)،(a-b) به توان های دو و سه رسیدند. حال این اتحاد برای توانهای طبیعی n هم قابل تعمیم است و به آن اتحاد بسط دو جمله ای نیوتن می گویند.




مثال:


اتحاد مربع سه جمله



مثال:

تعمیم اتحاد مربع چند جمله





مثال:


اتحاد مزدوج



مثال:

  • لازم به توضیح است اگر داشته باشیم a+b آنگاه عبارت a-b را مزدوج عبارت اول یعنی a+b می گویند.

اتحاد جمله مشترک



مثال:

تعمیم اتحاد جمله مشترک




  • این روال به همین ترتیب برای حالات دیگر هم برقرار است.

مثال:



اتحاد مجموع مکعبات دو جمله(اتحاد چاق و لاغر)



مثال:

تعمیم اتحاد مجموع مکعبات دو جمله(اتحاد چاق و لاغر)


پس می توان نتیجه زیر را بیان کرد:

  • لازم به توضیح است که این اتحاد فقط برای حالتی برقرار ست که توان n عدد طبیعی فرد باشد.

مثال:

اتحاد تفاضل مکعبات دو جمله(اتحاد چاق و لاغر)



مثال:

تعمیم اتحاد تفاضل مکعبات دو جمله(اتحاد چاق و لاغر)


پس می توان نتیجه زیر را بیان کرد:

  • لازم به توضیح است این این اتحاد برای هر عدد طبیعی n برقرار است.

مثال:

اتحاد اویلر


  • برهان:



  • صورتی دیگر از اتحاد اویلر:

  • برهان:



  • نتایج اتحاد اویلر:
    • اگر a+b+c=0 آنگاه
    • اگر a=b=c آنگاه

مثال:

همچنین اگر باشد آنگاه داریم:

اتحاد لاگرانژ



مثال:


منبع:رشد

[ بازدید : 254 ] [ امتیاز : 3 ] [ نظر شما :
]

[ پنجشنبه 6 فروردين 1394 ] 23:41 ] [ امیرحسین جعفری ]

[ ]

همه چیز درباره ی جبر بول

http://0up.ir/do.php?filename=Boolean-Algebra.pdf

[ بازدید : 223 ] [ امتیاز : 3 ] [ نظر شما :
]

[ پنجشنبه 6 فروردين 1394 ] 12:09 ] [ امیرحسین جعفری ]

[ ]

جبر بول و گیت های منطقی

http://0up.ir/do.php?filename=Jabr-Bool.pdf


[ بازدید : 417 ] [ امتیاز : 3 ] [ نظر شما :
]

[ پنجشنبه 6 فروردين 1394 ] 12:05 ] [ امیرحسین جعفری ]

[ ]

پارا متر چیست؟

پارامتر چیست؟:

برای بیان مفهوم فوق بهتر است سوال زیر را در نظر بگیریم.
چند درصد مردم ایران در حال حاضر به سیگار اعتیاد دارند. جواب این سوال یک عدد ثابت اما مجهول است. به صفت یا مشخصه ای در مورد جامعه که مجهول است و قصد بررسی و محاسبه آنرا داریم پارامتر گفته می شود.

منبع:http://amar.khshp.ir/base/parameter.htm

[ بازدید : 260 ] [ امتیاز : 3 ] [ نظر شما :
]

[ پنجشنبه 6 فروردين 1394 ] 11:49 ] [ امیرحسین جعفری ]

[ ]

ساخت وبلاگ تالار اسپیس فریم اجاره اسپیس خرید آنتی ویروس نمای چوبی ترموود فنلاندی روف گاردن باغ تالار عروسی فلاورباکس گلچین کلاه کاسکت تجهیزات نمازخانه مجله مثبت زندگی سبد پلاستیکی خرید وسایل شهربازی تولید کننده دیگ بخار تجهیزات آشپزخانه صنعتی پارچه برزنت مجله زندگی بهتر تعمیر ماشین شارژی نوار خطر خرید نایلون حبابدار نایلون حبابدار خرید استند فلزی خرید نظم دهنده لباس خرید بک لینک خرید آنتی ویروس
بستن تبلیغات [X]