ریاضی خونه

ریاضی علم شیرین

با سلام ... ورود شمارا به وبلاگ ریاضی خونه خوش آمد میگویم ... برای مشاهده کامل مطالب از آرشیو مطالب وبلاگ استفاده کنید.

مستطیل ها ی محاطی و مستطیل های محیطی و مجموع پایین ریمان و مجموع بالای ریمان

http://0up.ir/do.php?filename=int1.rar

[ بازدید : 506 ] [ امتیاز : 4 ] [ نظر شما :
]

[ دوشنبه 3 فروردين 1394 ] 22:01 ] [ امیرحسین جعفری ]

[ ]

ریاضی و ارطباط آن با علم و فناوری و جامعه

http://0up.ir/do.php?filename=Nashr-e-Riyazi.pdf

[ بازدید : 229 ] [ امتیاز : 3 ] [ نظر شما :
]

[ دوشنبه 3 فروردين 1394 ] 20:47 ] [ امیرحسین جعفری ]

[ ]

ضرب ماتریس‌ها


ضرب ماتریس‌ها


ضرب اسکالر در ماتریس

اگر و یک اسکالر باشد، آنگاه

نکته: اگر و دو اسکالر و و دو ماتریس از مرتبه ی باشند، آنگاه:





ضرب ماتریس در ماتریس

اگر و ، آنگاه ضرب دو ماتریس را با علامت "" نمایش داده و بصورت زیر تعریف خواهیم کرد:



به عنوان مثال اگر و دو ماتریس به قرار زیر باشند:
تصویر

آنگاه:
تصویر


نکته:
  1. اگر آنگاه
  2. اگر آنگاه
  3. اگر آنگاه:
  4. در حالت کلی ضرب ماتریس ها خاصیت جابه جایی ندارد (حتی اگر و تعریف شده باشند و این در حالتی ممکن است که و دو مربع هم مرتبه باشند).

خواص ضرب ماتریس‌ها

  • ضرب ماتریسها، خاصیت جابجایی ندارد. یعنی
  • در ضرب ماتریسها خاصیت شرکت‌پذیری وجود دارد. یعنی
  • در ضرب ماتریسها خاصیت توزیعی عمل ضرب نسبت به عمل جمع از چپ و از راست وجود دارد. یعنی
  • هرگاه حاصلضرب دو ماتریس برابر صفر شود نمی‌توان نتیجه گرفت که لااقل یکی از آنها برابر صفر است بعبارت دیگر حاصلضرب دو ماتریس ممکن است برابر صفر بشود ولی هیچکدام از آنها برابر صفر نباشند. یعنی {TEX()} {AB=bar{0} no Rightarrow A= bar {0} یا B= bar{0}{TEX0

منبع :رشد

[ بازدید : 357 ] [ امتیاز : 3 ] [ نظر شما :
]

[ دوشنبه 3 فروردين 1394 ] 21:51 ] [ امیرحسین جعفری ]

[ ]

دنباله

مفهوم دنباله

مجموعه اعداد زوج طبیعی را در نظر بگیرید اولین عضو این مجموعه عدد 2 است و n امین عضو آن 2n است.
حال مجموعه اعداد طبیعی را در نظر بگیرید: با کمی دقت متوجه می‌شویم که می‌توان یک تابع یک به یک از مجموعه اعداد طبیعی به مجموعه اعداد طبیعی زوج تعریف نمود که در عضو از مجموعه اعداد طبیعی را به یک عضو از مجموعه اعداد طبیعی زوج متناظر کند.(مانند شکل)
img/daneshnameh_up/3/35/sequence.jpg

اگر این تناظر را به صورت مجموعه زوج های مرتب بنویسیم خواهیم داشت: متوجه می‌شویم تابع f از مجموعه اعداد طبیعی به مجموعه اعداد طبیعی زوج، تابعی است یک به یک که هر عضو از دامنه خود را دو برابر می‌کند و به یک عضو از مجموعه اعداد طبیعی زوج متناظر می‌کند و می‌توان چنین ضابطه‌ای برای آن تعیین نمود:
حال در مثالی دیگر تابع را در نظر بگیرید. بیاید بجای اینکه به جای متغیر تابع عددی حقیقی قرار دهیم، متغیرهای طبیعی را جایگزین کنیم. در این صورت داریم:

مشاهده می‌کنید این تابع نیز هر عدد طبیعی را به عنوان ورودی دریافت می‌کند و آن را به یک عدد دیگر نسبت می‌دهد با این تفاوت که این تابع دیگر یک به یک نمی‌باشد و فقط بین اعداد طبیعی و مجموعه اعداد حقیقی یک تناظر بوجود می‌آورد.
نمونه های دیگری نیز از این توابع وجود دارد مثلاً توابع ، ، که در آنها n عددی طبیعی است.
به چنین توابعی که از از مجموعه اعداد طبیعی به یک مجموعه دیگر تعریف می‌شوند دنباله می‌گوییم. در دنباله اعداد طبیعی زوج، عدد 2 از برد تابع را جمله اول، عدد 4 را جمله دوم و به همین ترتیب عدد 2n را جمله n ام دنباله می‌گوییم. همین شیوه برای سایر دنباله‌ها نیز اعمال می‌شود.
در یک دنباله، اعداد طبیعی در دامنه به گونه‌ای به اعضای برد متناظر می‌شوند که عدد طبیعی متناظر شده بیانگر شماره آن جمله در برد باشد به عنوان مثال در دنباله اعداد طبیعی زوج، عدد 1 در دامنه به عدد 2 در برد که اولین جمله دنباله است متناظر می‌شود و عدد 10 از دامنه به عدد 20 از برد که جمله دهم است متناظر می‌شود و به همین ترتیب عدد n‌ در دامنه به عدد 2n از برد که جمله n ام است متناظر می شود.

تعریف دنباله



دنباله (sequence) تابعی است که دامنه آن مجموعه اعداد طبیعی یا قطعه ای از مجموعه اعداد طبیعی باشد. پس در حالت کلی یک دنباله چون f تابعی است از مجموعه اعداد طبیعی به یک مجموعه دیگر چون A.

اگر دامنه دنباله قطعه ای از مجموعه اعداد طبیعی باشد دنباله را متناهی می‌گوییم و اگر دامنه دنباله خود مجموعه اعداد طبیعی باشد دنباله را نامتناهی می‌گوییم. به عنوان مثال دنباله اعداد طبیعی زوج کوچکتر از 10 یک دنباله متناهی است چرا که دامنه آن قطعه ای از مجموعه اعداد طبیعی یعنی است و دنباله اعداد زوج دنباله‌ای نامتناهی است چرا که دامنه آن خود مجموعه اعداد طبیعی است.

برای مشخص کردن یک دنباله مانند هر تابع دیگر باشد دامنه و ضابطه آن را مشخص کرد. ضابطه یک دنباله را در اصطلاح جمله عمومی آن دنباله می‌گوییم. اگر f یک دنباله باشد جمله عمومی آن را با (f(n و یا به صورتی معمول‌تر به صورت نشان می‌دهیم. پس برای نمایش مقدار دنباله f به ازای عدد طبیعی n بجای نماد (f(n معمولا از نماد استفاده می‌کنیم. به عنوان مثال در دنباله اعداد طبیعی زوج داریم:
برای نمایش خود دنباله از نماد استفاده می‌کنیم. پس دنباله اعداد طبیعی زوج را به این صورت نشان می دهیم:

دنباله حقیقی



دنباله را دنباله حقیقی می‌گویند هرگاه تابعی از مجموعه اعداد طبیعی به مجموعه اعداد حقیقی باشد به عبارت دیگر تابعرا یک دنباله حقیقی می‌گویند.
به عنوان مثال دنبالهدنباله‌ای حقیقی است چرا که برد آن از مجموعه اعداد حقیقی است.
  • لازم به توضیح است معمولاً منظور از دنباله، دنباله حقیقی است.

نمودار یک دنباله


از آنجا که دنباله یک تابع با دامنه عداد طبیعی است می‌توان دنباله را بوسیله نمودار نیز نمایش داد. این نمایش با دو روش انجام می‌شود. در یک روش می‌توان مانند توابع دیگر آن را در دستگاه مختصات دکارتی رسم کرد و در روشی دیگر می‌توان جملات آن را به همراه ذکر شماره آن جمله روی محور اعداد نشان داد. با ذکر یک مثال دو روش را توضیح می‌دهیم. به عنوان مثال می‌خواهیم دنباله اعداد زوج را به هر دو روش نشان دهیم:
  • بوسیله رسم نمودار در دستگاه مختصات دکارتی: برای این منظور محور افقی را برای متغیر انتخاب کرده و محور عمودی را برای نمایش تغییرات جملات دنباله استفاده می‌کنیم. نمودار این دنباله به این صورت خواهد بود:
تصویر

  • بوسیله رسم نمودار روی محور اعداد: برای این منظور روی محور اعداد مقدار جملات دنباله را یافته و شماره جمله را در بالا آن می‌نویسیم مانند این نمودار:
تصویر

جمله عمومی یک دنباله



همانطور که گفته شد یک دنباله تابعی با دامنه مجموعه اعداد طبیعی است پس برای دنباله ها در حالت کلی می‌توان ضابطه تعیین کرد که به ضابطه یک دنباله جمله عمومی آن دنباله می‌گویند. جمله عمومی یک دنباله به منزله یک قانون است که بوسیله آن هر عضو از دامنه(مجموعه اعداد طبیعی) به یک عضو از مجموعه برد متناظر می‌شود و به ازای هر مقدار از متغیر n، جملات دنباله را تولید می‌کند.
به عنوان مثال جمله عمومی دنباله اعداد طبیعی زوج به صورت است که همانند ضابطه تابع بوسیله آن می‌توان با قرار دادن هر n طبیعی جمله n ام را بدست آورد.
البته لازم به ذکر است همه دنباله‌ها دارای جمله عمومی نمی‌باشند. به عنوان مثال تا کنون جمله عمومی برای دنباله اعداد اول تعیین نشده است. همچنین ممکن است یک سری از اعداد را به عنوان جملات دنباله انتخاب نمود که نتوان میان آنها رابطه ای برقرار نمود و جمله عمومی برای آنها نوشت.
حال ممکن است این سوال پیش بیاید که آیا با در اختیار داشتن جملات یک دنباله می توان جمله عمومی آن را تعیین کرد؟
پاسخ را با یک مثال بررسی می‌کنیم. دنباله زیر را در نظر بگیرید:

می‌خواهیم جمله عمومی این دنباله را با توجه به جملاتش تعیین کنیم.
با مشاهده‌ی جملات ممکن است حدس شما این باشد که این دنباله، دنباله اعداد طبیعی فرد بزرگتر از یک است و جمله عمومی آن را می‌توان به این صورت نوشت:

اما این ممکن است یک جمله عمومی برای این دنباله باشد. ممکن است جملات دنباله در ادامه به این روال پیش نروند
و جمله چهارم این دنباله عددی چون 9 نباشد! چرا که ما از جمله سوم به بعد دنباله هیچ اطلاعی نداریم و هر عدد دیگری نیز می‌تواند باشد!
به عنوان مثال جمله عمومی دنباله فوق را می‌توان به این صورت نوشت:

با نوشتن جملات این دنباله داریم:

مشاهده می‌کنید جملات این دنباله تا جمله سوم همانند دنباله است ولی از جمله سوم به بعد مانند آن دنباله عمل نمی کند.
پس همواره از روی جملات یک دنباله نمی‌توان جمله عمومی آن را به درستی تعیین کرد. اما معمولاً برای نوشتن جمله عمومی یک دنباله با توجه به جملات آن، ساده ترین حالت را در نظر می‌گیریم. لذا جمله عمومی برای این دنباله صحیح‌تر است و زودتر به ذهن خطور می‌کند.

رابطه بازگشتی و دنباله بازگشتی


به دنباله اعداد زوج دقت کنید: ...,2,4,6,8,10,12
با کمی دقت در می‌یابید که برای بدست آوردن هر جمله کافی است جمله قبل را با عدد دو جمع کنید. به عنوان مثال برای بدست آوردن جمله پنجم(10) کافی است جمله چهارم(8) را با عدد دو جمع کنید. به این رابطه که بین جملات این دنباله برقرار است رابطه بازگشتی می گوییم.
  • تعریف: در بسیاری از دنباله‌ها بین هر جمله و جملات ماقبل یک رابطه‌ای وجود دارد که بوسیله آن می‌توان جملات بعدی را تعیین نمود. به چنین رابطه‌ای، رابطه بازگشتی می‌گوییم و به دنباله‌هایی با این رابطه، دنباله بازگشتی می‌گوییم.
از معروف ترین این دنباله ها می توان به دنباله فیبوناتچی و دنباله لوکا اشاره کرد.
به عنوان مثال دنباله فیبوناتچی دارای چنین رابطه‌ای است که بوسیله آن مشخص می‌شود:

که جملات آن به این صورت است: ...,1,1,2,3,5,8,13,21
مشاهده می‌شود برای بدست آوردن هر جمله از جمله دوم به بعد کافی است دو جمله ماقبل آن جمله را با هم جمع کنیم. مثلا برای محاسبه جمله نهم داریم:

از آنجا که دنباله نیز تابع می‌باشد می‌توان حد آن را نیز بررسی کرد که برای اطلاع از نحوه تعریف حد دنباله‌ها و محاسبه آنها می‌توانید به مقاله حد دنباله رجوع کنید.

منبع:رشد

[ بازدید : 212 ] [ امتیاز : 3 ] [ نظر شما :
]

[ دوشنبه 3 فروردين 1394 ] 12:42 ] [ امیرحسین جعفری ]

[ ]

حلقه

حلقه

هرگاه یک مجموعه ناتهی باشد ، گوییم مجموعه تحت دو عمل جمع و ضرب یک حلقه است ، هر گاه:
  1. یک گروه جابجایی باشد
  2. یک نیمگروه باشد.
  3. خاصیت توزیع پذیری ضرب نسبت به جمع از چپ و راست در برقرار باشد.

حلقه جابجایی

هرگاه حلقه تحت عمل ضرب دارای خاصیت جابجایی باشد ، گوییم یک حلقه جابجایی(آبلی ) است.

مقسوم علیه صفر

هرگاه یک حلقه باشد ، عنصر را یک مقسوم علیه صفر نامند ، هرگاه عضوی مانند در حلقه وجود داشته باشد ، بطوریکه.
در این تعریف اگر ، آنگاه را مقسوم علیه چپ صفر می‌نامد و اگر ،آنگاه را مقسوم علیه راست صفر می‌نامند.

واحد حلقه

اگر یک حلقه باشد،گوییم عنصری چون ،یک حلقه(واحد حلقه) است،هرگاه تحت عمل ضرب، عضو همانی باشد. یعنی:

اگر حلقه ای دارای عنصر واحد باشد، گوییم حلقه یکدار است و این یک را با نماد نشان می‌دهیم.

حلقه بدیهی

حلقه ای که فقط شامل عنصر صفر باشد، حلقه بدیهی نامیده می‌شود.

نکته

اگر ، حلقه بدیهی باشد، یعنی ، آنگاه .

قضیه

اگر یک حلقه و باشند ،آنگاه گزاره های زیر برقرارند:
1

2

3

4

5


عنصر یکال

هر گاه یک حلقه یکدار باشد، عنصر را عنصر یکال می‌نامیم ، هرگاه دارای وارون ضربی باشد .یعنی:

نکته

  1. در حلقه ، عنصر یکال است، هرگاه .
  2. عنصر یک هر حلقه منحصر بفرد است، اما یکال حلقه ، یکتا نیست.
  3. اگر یک حلقه مخالف صفرو یکدار نیز باشد، آنگاه .
  4. هر گاه حلقه یکدار و عنصر یکال باشد، آنگاه مقسوم علیه صفر نیست.

منبع:رشد

[ بازدید : 561 ] [ امتیاز : 4 ] [ نظر شما :
]

[ دوشنبه 3 فروردين 1394 ] 12:38 ] [ امیرحسین جعفری ]

[ ]

تابع


در ریاضیات ، تابع رابطه‌ای است که رابطه بین اعضای یک مجموعه را با اعضایی از مجموعه‌ای دیگر (شاید یک عضو از مجموعه) را بیان می‌کند. نظریه درباره تابع یک پایه اساسی برای خیلی از شاخه‌های ریاضی به حساب می‌آید. مفاهیم تابع ، نگاشت و تبدیل معمولاً مفاهیم مشابه‌ای هستند. عملکرد ها معمولاً دو به دو بین اعضای تابع وارد عمل می‌شوند.

تعریف تابع

در ریاضیات تابع عملکردی است که برای هر ورودی داده شده یک خروجی منحصر بفرد تولید می‌کند معکوس این مطلب را در تعریف تابع بکار نمی‌برند. یعنی در واقع یک تابع می‌تواند برای چند ورودی متمایز خروجیهای یکسان را نیز تولید کند. برای مثال با فرض y=x2 با ورودیهای 5- و 5 خروجی یکسان 25 را خواهیم داشت. در بیان ریاضی تابع رابطه‌ای است که در آن عنصر اول به عنوان ورودی و عنصر دوم به عنوان خروجی تابع جفت شده است.

به عنوان مثال تابع f(x)=x2 بیان می‌کند که ارزش تابع برابر است با مربع هر عددی مانند x



img/daneshnameh_up/b/b5/function-pic2.jpg




در واقع در ریاضیات رابطه را مجموعه جفتهای مراتب معرفی می‌کنند. با این شرط که هرگاه دو زوج با مولفه‌های اول یکسان در این رابطه موجود باشند آنگاه مولفه‌های دوم آنها نیز یکسان باشد. همچنین در این تعریف خروجی تابع را به عنوان مقدار تابع در آن نقطه می‌نامند. مفهوم تابع اساسی اکثر شاخه‌های ریاضی و علوم محاسباتی می‌باشد. همچنین در حالت کلی لزومی ندارد که ما بتوانیم فرم صریح یک تابع را به صورت جبری آلوگرافیکی و یا هر صورت دیگر نشان دهیم.

فقط کافیست این مطلب را بدانیم که برای هر ورودی تنها یک خروجی ایجاد می‌شود در چنین حالتی تابع را می‌توان به عنوان یک جعبه سیاه در نظر گرفت که برای هر ورودی یک خروجی تولید می‌کند. همچنین لزومی ندارد که ورودی یک تابع ، عدد و یا مجموعه باشد. یعنی ورودی تابع را می‌توان هر چیزی دلخواه در نظر گرفت البته با توجه به تعریف تابع و این مطلبی است که ریاضیدانان در همه جا از آن بهره می‌برند.

تاریخچه تابع

نظریه مدرن توابع ریاضی بوسیله ریاضیدان بزرگ لایب نیتر مطرح شد همچنین نمایش تابع بوسیله نمادهای (y=f(x توسط لئونارد اویلر در قرن 18 اختراع گردید، ولی نظریه ابتدایی توابع به عنوان عملکرهایی که برای هر ورودی یک خروجی تولید کند توسط جوزف فوریه بیان شد. برای مثال در آن زمان فوریه ثابت کرد که هر تابع ریاضی سری فوریه دارد.

چیزی که ریاضیدانان ما قبل اوبه چنین موردی دست نیافته بودند، البته موضوع مهمی که قابل ذکر است آنست که نظریه توابع تا قبل از بوجود آمدن نظریه مجموعه‌ها در قرن 19 پایه و اساس محکمی نداشت. بیان یک تابع اغلب برای مبتدی‌ها با کمی ابهام همراه است، مثلا برای توابع کلمه x را به عنوان ورودی و y را به عنوان خروجی در نظر می‌گیرند ولی در بعضی جاها y,x را عوض می‌کنند.

ورودی تابع

ورودی یک تابع را اغلب بوسیله x نمایش می‌دهند. ولی زمانی که ورودی تابع اعداد صحیح باشد. آنرا با x اگر زمان باشد آنرا با t ، و اگر عدد مختلط باشد آنرا با z نمایش می‌دهند. البته اینها مباحثی هستند که ریاضیدانان برای فهم اینکه تابع بر چه نوع اشیایی اثر می‌کند بکار می‌رود. واژه قدیمی آرگومان قبلا به جای ورودی بکار می‌رفت. همچنین خروجی یک تابع را اغلب با y نمایش می‌دهند در بیشتر موارد به جای f(x) , y گفته می‌شود. به جای خروجی تابع نیز کلمه مقدار تابع بکار می‌رود. خروجی تابع اغلب با y نمایش داده می‌شود. ولی به عنوان مثال زمانی که ورودی تابع اعداد مختلط باشد، خروجی آنرا با "W" نمایش می‌دهیم. (W = f(z

تعریف روی مجموعه‌ها

یک تابع رابطه‌ای منحصر به فرد است که یک عضو از مجموعه‌ای را با اعضای مجموعه‌ای دیگر مرتبط می‌کند. تمام روابط موجود بین دو مجموعه نمی‌تواند یک تابع باشد برای روشن شدن موضوع ، مثالهایی در زیر ذکر می‌کنیم:



img/daneshnameh_up/a/af/122.jpg



این رابطه یک تابع نیست چون در آن عنصر 3، با دو عنصر ارتباط دارد. که این با تعریف تابع متناقص است چون برای یک عنصر از مجموعه، دو عنصر در مجموعه موجود است





img/daneshnameh_up/c/c5/23.gif



تعریف ساخت یافته تابع

بطور ساخت یافته یک تابع از مجموعه x به مجموعه y بصورت f:x→y نوشته می‌شود و به صورت سه تایی مرتب ( (x,y,G(f) نمایش داده می‌شود. بطوری که (G(f زیر مجموعه‌ای از حاصلضرب کارتزین xy می‌باشد. با این شرط که به ازای هر x در X یک Y متعلق به Y نسبت داد شود. با این شرط زوج مرتب (x,y) را در داخل (G(f می‌پذیریم. در این حالت نیز X را به عنوان دامنه f و y را به عنوان برد fو (G(f را به عنوان نمودار و یا گراف تابع F در نظر می‌گیرند.

خواص توابع

توابع می‌توانند:

توابع چند متغیره

یک تابع ممکن است بیشتر از یک متغیر داشته باشد برای مثال یک تابع از f است که دارای سه پارامتر x,y,z است که یک ارزش را برای تابع تولید می‌کنند. از توابع چند متغیره می‌توان به قانون جاذبه نیوتن اشاره کرد که در آن دو جرم با متغیر و و نیز یک متغیر برای فاصله هر جرم به نام در آن وجود دارد.



با مقدار دهی به سه پارامتر فوق مقدار تابع F محاسبه خواهد شد.

منبع:رشد

[ بازدید : 176 ] [ امتیاز : 3 ] [ نظر شما :
]

[ دوشنبه 3 فروردين 1394 ] 12:35 ] [ امیرحسین جعفری ]

[ ]

عدد شاد

مجموع مربعات ارقام یک عدد صحیح چون را تعریف می کنیم. به طریق مشابه مجموع مربعات ارقام عدد را تعریف می‌کنیم و به هین ترتیب. در انجام این عمل همواره در نهایت به یکی از این ده عدد خواهیم رسید:


اگر برای بعضی از i ها باشد آنگاه عدد اولیه عدد مبارک،سعید یا شاد (Happy Number) گفته می شود. به عنوان مثال با شروع از عدد 7 دنباله زیر را بدست می آوریم:

پس 7 عدد سعید یا شاد است.
  • اولین اعداد سعید به ترتیب عبارتند از:
::
تعداد جملات حاصل از هر یک از اعداد فوق تا زمانی که به عدد یک برسند به این صورت است:

  • تعداد اعداد سعید که کوچکتر یا مساوی ...,1,10,100 باشند به ترتیب عبارت است از:

  • در اینجا اولین اعدادی را معرفی می‌کنیم که ضمن اینکه خودشان عدد سعید می‌باشند عدد بعدی آنها نیز سعید است:

به عبارت دیگر هر دو مولفه زوج‌های زیر عدد سعید می‌باشند:

  • اگرعددی سعید باشد ودنباله مربوط به آن باشد آنگاهتوانی از 10 است یعنی یک از اعداد 10و100و1000و... می‌باشد.
    • برهان:
به برهان خلف فرض می‌کنیم چنین نباشد یعنی توانی از 10 نباشد(فرض خلف). پس عددی m رقمی(m عددی طبیعی دلخواه است ) به صورت است که و برای هر طبیعی داریم بنابه فرض چون جمله بعدی
در دنباله عدد 1 است پس:
اما از طرفی چون توانی از ده نمی‌باشد پس برای یک i که خواهیم داشت این نتیجه می‌دهد که این ایجاب می کند که این تناقض است. پس فرض خلف باطل و حکم ثابت می شود.

با توجه به تعریفی که از عدد سعید ارائه شد واضح است که اگرعددی سعید باشد هر یک از اعداد در دنباله نیز سعید خواهند بود.
عددی که سعید نمی‌باشد عدد بد اقبال,نامبارک یا ناسعید (Unhappy Number) می‌گوییم.
به عنوان مثال عدد شیطان یعنی عدد 666 عدد ناسعید است. چون اگر دنبالهرا برای آن بنویسم خواهیم داشت:

مشاهده می شود عدد 37 در دنباله فوق دوبار تکرار شده است و همین مطلب برای رد سعید بودن این عدد کافی است چون از اینجا به بعد سلسله جملات 37,58,89,145,42,20,4,16 در دنباله تکرار می شوند و این دنباله هیچ گاه به یک نمی‌رسد. پس دنباله مربوط به اعداد ناسعید از جایی به بعد به صورت متناوب تکرار می شود. همچنین همانند اعداد سعید در دنباله حاصل از اعداد ناسعید همه ها عدد نا سعید می باشند(چرا؟).

منبع:رشد

[ بازدید : 239 ] [ امتیاز : 3 ] [ نظر شما :
]

[ دوشنبه 3 فروردين 1394 ] 1:27 ] [ امیرحسین جعفری ]

[ ]

هیپربولیک


تصویر
هیپربولیک

[ بازدید : 191 ] [ امتیاز : 3 ] [ نظر شما :
]

[ دوشنبه 3 فروردين 1394 ] 1:23 ] [ امیرحسین جعفری ]

[ ]

دكارت

img/daneshnameh_up/0/0b/Deakart.png

رنه دکارت( Rene Decartes)، فیلسوف، ریاضیدان و فیزیکدان بزرگ عصر رنسانس در روز 31 ماه مارس 1596 میلادی، در شهرک لاهه از ایالت تورنِ(Touraine) فرانسه متولد شد. مادرش در سیزده ماهگی وی درگذشت و پدرش قاضی و مستشار پارلمان انگلستان بود.

دکارت در سال 1606 میلادی، هنگامیکه پسر ده ساله ای بود، وارد مدرسه لافلش(La Fleche) شد. این مدرسه را فرقه ای از مسیحیان به نام ژزوئیتها یا یسوعیان تاسیس کرده بودند و در آن علوم جدید را همراه با تعالیم مسیحیت تدریس می کردند. دکارت طی هشت سال تحصیل در این مدرسه، ادبیات، منطق، اخلاق، ریاضیات و مابعدالطبیعه را فرا گرفت. در سال 1611 میلتدی، دکارت در یک جلسه سخنرانی تحت عنوان اکتشاف چند سیاره سرگردان در اطراف مشتری، از اکتشافات گالیله اطلاع حاصل کرد. این سخنرانی در روح او که تاثیر فراوان گذاشت.

پس از اتمام دوره و خروج از لافلش، مدتی به تحصیل علم حقوق و پزشکی مشغول گردید، اما در نهایت تصمیم گرفت به جهانگردی پرداخته و آن گونه دانشی را که برای زندگی سودمند باشد، فرا بگیرد. به همین منظور، مدتی به خدمت ارتش هلند درآمد؛ چرا که فرماندهی آن را شاهزاده ای به نام موریس بر عهده داشت که در فنون جنگ و نیز فلسفه و علوم، مهارتی به سزا داشت و بسیاری از اشراف فرانسه دوست داشتند تحت فرمان او فنون رزمی را فرا بگیرند.
دکارت در مدتی که در قشون ارتش هلند بود، به علم مورد علاقه خود، یعنی ریاضیات می پرداخت.

در بهار سال 1619 میلادی از هلند به دانمارک و آلمان رفت و به خدمت سرداری به نام ماکسیمیلیان درآمد. اما زمستان فرا رسید و در دهکده نوبرگ(Neuberg) در حوالی رود دانوب، بی دغدغه خاطر و با فراغت تمام، به تحقیق در ریاضیات پرداخت و براهین تازه ای کشف کرد که بسیار مهم و بدیع بود و در پیشرفت ریاضیات، تاثیر به سزایی گذاشت.

پس از مدتی، به فکر یکی ساختن همه علوم افتاد و در شب دهم نوابر 1619 سه رویای امید بخش دید و آن ها را چنین تعبیر کرد که:
روح حقیقت او را برگزیده و از او خواسته تا همه دانش ها را به صورت علم واحدی در آورد.
این رویاها به قدری او را مشعوف ساخت که نذر کرد تا مقبره حضرت مریم را در ایتالیا زیارت نماید. وی چهار سال بعد به نذر خود وفا کرد.

از 1619 به بعد، چند سالی در اروپا به سیاحت پرداخت و چند سالی هم در پاریس اقامت کرد، اما زندگی در آن جا را که مزاحم فراغت خاطر خود می دید، نپسندید و در سال 1628 میلادی بار دیگر به هلند بازگشت و در آن دیار، تا سال 1649 میلادی، مجرد ، تنها و دور از هر گونه غوغای سیاسی و اجتماعی تمام اوقات خود را صرف پژوهش های علمی و فلسفی نمود.
تحقیقات وی، بیشتر تجربه و تفکر شخصی بود و کمتر از کتاب استفاده می کرد.

در سپتامبر 1649 به دعوت کریستین، ملکه سوئد برای تعلیم فلسفه خویش به دربار وی در استکهلم رفت. اما زمستان سرد این کشور اسکاندیناوی از یک سو و ضرورت سحرخیزی در ساعت پنج بامداد برای تعلیم ملکه از سوی دیگر، دکارت را که به این نوع آب و هوا و سحرخیزی عادت نداشت، به بیماری ذات الریه مبتلا ساخت.
دکارت از دانشمندان و فیلسوفان بزرگ تاریخ به حساب می آید. او قانون شکست نور را در علم فیزیک کشف کرد و هندسه تحلیلی را در ریاضیات و هندسه بنا نهاد.
در تاریخ فلسفه غرب ، فلسفه جدید با دکارت آغاز می کنند.

برای اطلاعات بیشتر موارد زیر را ببینید:

منابع


  • تاریخ فلسفه کاپلستون، جلد 4 صفحه 88-83
  • منبع:رشد

[ بازدید : 177 ] [ امتیاز : 3 ] [ نظر شما :
]

[ دوشنبه 3 فروردين 1394 ] 0:57 ] [ امیرحسین جعفری ]

[ ]

مونثر


مونژ

img/daneshnameh_up/4/43/Monej.jpg

گاسپار مونژ در سال 1746 در شهر کوچک بون واقع در فرانسه متولد شد. مونژ که فرزند کاسب دوره گردی بود در 16 سالگی به تیزکردن چاقو و قیچی و غیره می پرداخت وی با وسایلی که به دست خود ساخته بود نقشه بزرگی از وطن خود تهیه کرد که مورد توجه و تحسین فراوان واقع شد و نقشه او را در فرمانداری نصب کردند.

معلمین او پس از مشاهده نقشه گفتند او داناتر از آن است که شاگرد ما باشد و او را برای تدریس فیزیک به مدرسه کشیشان شهر لیون فرستادند وی دستیار شارل بوسو، استاد ریاضیات، شد در سال 1768 مونژ جانشین او شد اگر چه مقام استادی نداشت سال بعد به عنوان مدرس فیزیک تجربی در مدرسه جای آبه نوله را گرفت در این سمتهای دو گانه که قسمتی از آن اختصاص به هدفهای علمی داشت مونژ نشان داد که ریاضیدان و فیزیکدانی توانا، طراحی با استعداد، آزمایگشری ماهر و معلمی در تراز اول است. مونژ به مطلعه بعضی از شاخه های هندسه دوباره جان بخشید و کار وی نقطه شروع شکوفایی فوق العاده آن رشته در سده 19 بود علاوه بر این پژوهشهای وی به رشته های دیگر تحلیل ریاضی کشیده شد خصوصاٌ به نظریه معادلات دیفرانسیل جزئی و مسائل فیزیک، شیمی و فناوری. مونژ که معلمی نامدار و رئیس مدرسه ای بی نظیر بود، مسئولیتهای مهم اداری و سیاسی را در طول انقلاب و دوره امپراطوری بر عهده گرفت بنابراین وی یکی از مبتکرترین ریاضیدانان عصر خود بود مونژ خیلی زود کارهای شخصی خود را آغاز کرد پژوهشهای وره جوانی او(1766 – 1772) بسیار متنوع اما جلوه دهنده خصوصیاتی بودند که نشانه استعداد کامل وی بود: از جمله حس تند و تیز درک واقعیت هندسی، علاقه به مسائل علمی، توانایی عظیم تحلیلی و توجه به جنبه های متعدد تحلیلی هندسی. در جریان سالهای 1777 تا 1780 مونژ عمدتاٌ به فیزیک و شیمی علاقه مند بود و مقدمات تهیه آزمایشگاه شیمی مجهزی را برای مدرسه مهندسی فراهم آورد انتخاب شدنش به عضویت فرهنگستان علوم به عنوان هندسه دان دستیار در سال 1780 زندگی مونژ را دگرگون ساخت زیرا وی را مجبور کرد که بر اساس منظمی در پاریس اقامت کند در پاریس در طرحهای فرهنگستان شرکت کرد و مقاله هایی در باره فیزیک و شیمی و ریاضیات تنظیم و عرضه نمود فهرستی از مطالبی که به فرهنگستان تقدیم کرد گواه بر تنوع آنها است: ترکیب اسید نیتریک، ا=تولید سطوح منحنی، معادلات تفاضلی متناهی و معادلات دیفرانسیل جزئی، انعکاس مضاعف و ساختار اسپات اسبند، ترکیب آهن، فولاد و چدن و تاثیر جرقه های برقی و بر گاز بیو کسید کربن، پدیده موئینگی و علل بعضی از پدیده های هواشناختی و بررسی در نور شناسی فیزولوژیک.

وقتی انقلاب در 1789 آغاز شد مونژ در زمره شناخته شده ترین دانشمندان فرانسوی بود او که عضو بسیار فعال فرهنگستان علوم بود شهرتی در ریاضیات و فیزیک و شیمی کسب کرده بود به عنوان ممتحن دانشجویان افسری نیروی دریایی، شاخه ای از مدارس نظامی فرانسه را رهبری می کرد که در آن زمان عملاٌ تنها مؤسسات نظامی بودند که تعلیمات علمی شایسته ای به دانشجویان خود می دادند و این مقام وی را، در هر بندری که از آن دیدار می کرد با دیوانسالارانی در تماس می گذاشت که اندکی بعد تحت مدیریت او قرار می گرفتند این مقام همچنین وی را قادر ساخت که معدنهای آهن، کارخانه ذوب آهن و کارخانه های دیگر را ببیند و بدین ترتیب در کار فلز پردازی و مسائل فناوری خبره و صاحب نظر شود علاوه بر این اصلاح مهمی که در 1776 در روش تعلیم در مدارس نیروی دریایی انجام داده بود وی را برای تلاشهایی آماده ساخت کهدر زمان انقلاب برای تازه کردن روشهای علمی و فنی بر عهده گرفت در سال 1794 مسئولیت تاسیس مدرسه مرکزی کارهای عامه(که بعداٌ به مدرسه پلی تکنیک تبدیل شد) به وی محول گردید مونژ مه در سال 1794 به عنوان معلم هندسه ترسیمی منصوب شد بر عمل تربیت سرکارگران آینده نظارت کرد و هندسه ترسیمی را در دوره های انقلابی که برای تکمیل تربیت دانشجویان آینده طراحی شده بودند تدریس نمود و یکی از فعالترین عضوهای شورای مدیریت بود. این مدرسه پس از دو ماه تاخیر که بر اثر مشکلات سیاسی پیش آمد در سال 1795 به نجومی منظم شروع به کار کرد. هر چند وظایفی که به عنوان سناتور به عهده مونژ محول شد موجب گردید که او چند بار از درسهایش در مدرسه پلی تکنیک دور شود از علاقه شدیدش به مدرسه هیچ کاسته نشد مراقبت دقیق در پیشرفت دانشجویان داشت و کارهای پژوهشی انان را دنبال می کرد و دقت خاصی به برنامه تعلیمات مبذول داشت بیشتر آنچه مونژ در این دوره منتشر کرد برای دانشجویان مدرسه پلی تکنیک نوشته شده بود موفقیت گسترده کتاب او بنام«هندسه ترسیمی) (1799) باعث اشاعه سریع این شاخه جدید هندسه هم در فرانسه و هم در خارج از آن شد. این اثر چند بار چاپ شد.

کار عملی مونژ ریاضیات(شاخه های گوناگون هندسه و تحلیل ریاضی) فیزیک، مکانیک و نظریه ماشینها را در می گرفت اگر چه اطلاع از جزئیات خدمات مونژ به فیزیک بسیار ناچیز است زیرا وی هرگز اثر عمده ای در این زمینه منتشر نساخت خدمات اصلی وی متمرکز بودند بر نظریه گرما، صوت، برق ساکن، نور شناسی(نظریه سرابها) مهمترین پژوهش مونژ در شیمی مربوط بود به ترکیب آب. خیلی زود، در سال 1781 وی ترکیب اکسیژن با ئیدروژن را در لوله اکسیژن سنج تحقق بخشید و در سال 1783 – همزمان با لاووازیه و بی ارتباط با او – آب را ترکیب کرد. با این که اسباب مونژ بسیار ساده تر بود نتایج اندازه گیریهایش دقیقتر بودند. در قلمرو تجربی در سال 1784 مونژ با همکاری کلوله برای نخسین بار موفق شد که گازی را مایع سازد و آن انیدرید سولفور(بیوکسیدگوگرد) بود.

سراجام بین سالهای 1786 و 1788 مونژ با برتوله و اندر مونه در اصول فلز پردازی و ترکیب آهن و چدن و فولاد به پژوهش پرداخت. مونژ مردی شجاع و از دوستان ناپلئون بود و در سال 1798 به اتفاق او به کشور مصر رفت در این سفر ناپلئون نتوانست او را از شرکت در حمله به اسکندریه منصرف سازد.

بعد از آنکه ناپلئون روانه سنت هلن گردید مخترع هندسه ترسیمی و ایجاد کننده اصلی مدرسه پلی تکنیک هم تمام عناوین خود را از دست داد و از آکادمی رانده شد. مونژ در 28 سال 1818 در 72 سالگی در پاریش درگذشت مخترع هندسه ترسیمی میراثی عظیم از خود به جا گذاشت زیرا ساختن ماشینهای مدرن و عمارات عظیم بدون کمک آن ممکن نیست.

منبع :رشد

[ بازدید : 774 ] [ امتیاز : 3 ] [ نظر شما :
]

[ دوشنبه 3 فروردين 1394 ] 21:50 ] [ امیرحسین جعفری ]

[ ]

ساخت وبلاگ تالار اسپیس فریم اجاره اسپیس خرید آنتی ویروس نمای چوبی ترموود فنلاندی روف گاردن باغ تالار عروسی فلاورباکس گلچین کلاه کاسکت تجهیزات نمازخانه مجله مثبت زندگی سبد پلاستیکی خرید وسایل شهربازی تولید کننده دیگ بخار تجهیزات آشپزخانه صنعتی پارچه برزنت مجله زندگی بهتر تعمیر ماشین شارژی نوار خطر خرید نایلون حبابدار نایلون حبابدار خرید استند فلزی خرید نظم دهنده لباس خرید بک لینک خرید آنتی ویروس
بستن تبلیغات [X]